Skip to main content

LiteLLM - Getting Started

https://github.com/BerriAI/litellm

Call 100+ LLMs using the same Input/Output Format

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
  • Track spend & set budgets per project LiteLLM Proxy Server

How to use LiteLLM

You can use litellm through either:

  1. LiteLLM Proxy Server - Server (LLM Gateway) to call 100+ LLMs, load balance, cost tracking across projects
  2. LiteLLM python SDK - Python Client to call 100+ LLMs, load balance, cost tracking

When to use LiteLLM Proxy Server (LLM Gateway)

tip

Use LiteLLM Proxy Server if you want a central service (LLM Gateway) to access multiple LLMs

Typically used by Gen AI Enablement / ML PLatform Teams

  • LiteLLM Proxy gives you a unified interface to access multiple LLMs (100+ LLMs)
  • Track LLM Usage and setup guardrails
  • Customize Logging, Guardrails, Caching per project

When to use LiteLLM Python SDK

tip

Use LiteLLM Python SDK if you want to use LiteLLM in your python code

Typically used by developers building llm projects

  • LiteLLM SDK gives you a unified interface to access multiple LLMs (100+ LLMs)
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router

LiteLLM Python SDK

Basic usage

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

Streaming

Set stream=True in the completion args.

from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)

Exception handling

LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.

from openai.error import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try:
# some code
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
print(e)

Logging Observability - Log LLM Input/Output (Docs)

LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["lunary", "langfuse", "helicone"] # log input/output to lunary, langfuse, supabase, helicone

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

Track Costs, Usage, Latency for streaming

Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback

import litellm

# track_cost_callback
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
response_cost = kwargs.get("response_cost", 0)
print("streaming response_cost", response_cost)
except:
pass
# set callback
litellm.success_callback = [track_cost_callback] # set custom callback function

# litellm.completion() call
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
],
stream=True
)

LiteLLM Proxy Server (LLM Gateway)

Track spend across multiple projects/people

ui_3

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

📖 Proxy Endpoints - Swagger Docs

Go here for a complete tutorial with keys + rate limits - here

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Step 2: Make ChatCompletions Request to Proxy

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])

print(response)

More details